FPGA Bitcoin Miner – BitcoinWiki

Best $100-$300 FPGA development board in 2018?

Hello, I’ve been trying to decide on a FPGA development board, and have only been able to find posts and Reddit threads from 4-5 years ago. So I wanted to start a new thread and ask about the best “mid-range” FGPA development board in 2018. (Price range $100-$300.)
I started with this Quora answer about FPGA boards, from 2013. The Altera DE1 sounded good. Then I looked through the Terasic DE boards.
Then I found this Reddit thread from 2014, asking about the DE1-SoC vs the Cyclone V GX Starter Kit: https://www.reddit.com/FPGA/comments/1xsk6w/cyclone_v_gx_starter_kit_vs_de1soc_board/‬ (I was also leaning towards the DE1-SoC.)
Anyway, I thought I better ask here, because there are probably some new things to be aware of in 2018.
I’m completely new to FPGAs and VHDL, but I have experience with electronics/microcontrollers/programming. My goal is to start with some basic soft-core processors. I want to get some C / Rust programs compiling and running on my own CPU designs. I also want to play around with different instruction sets, and maybe start experimenting with asynchronous circuits (e.g. clock-less CPUs)
Also I don’t know if this is possible, but I’d like to experiment with ternary computing, or work with analog signals instead of purely digital logic. EDIT: I just realized that you would call those FPAAs, i.e. “analog” instead of “gate”. Would be cool if there was a dev board that also had an FPAA, but no problem if not.
EDIT 2: I also realized why "analog signals on an FPGA" doesn't make any sense, because of how LUTs work. They emulate boolean logic with a lookup table, and the table can only store 0s and 1s. So there's no way to emulate a transistor in an intermediate state. I'll just have play around with some transistors on a breadboard.
UPDATE: I've put together a table with some of the best options:
Board Maker Chip LUTs Price SoC? Features
icoBoard Lattice iCE40-HX8K 7,680 $100 Sort of A very simple FPGA development board that plugs into a Raspberry Pi, so you have a "backup" hard-core CPU that can control networking, etc. Supports a huge range of pmod accessories. You can write a program/circuit so that the Raspberry Pi CPU and the FPGA work together, similar to a SoC. Proprietary bitstream is fully reverse engineered and supported by Project IceStorm, and there is an open-source toolchain that can compile your hardware design to bitstream. Has everything you need to start experimenting with FPGAs.
iCE40-HX8K Breakout Board Lattice iCE40-HX8K-CT256 7,680 $49 No 8 LEDs, 8 switches. Very similar to icoBoard, but no Raspberry Pi or pmod accessories.
iCE40 UltraPlus Lattice iCE40 UltraPlus FPGA 5280 $99 No Chip specs. 4 switchable FPGAs, and a rechargeable battery. Bluetooth module, LCD Display (240 x 240 RGB), RGB LED, microphones, audio output, compass, pressure, gyro, accelerometer.
Go Board Lattice ICE40 HX1K FPGA 1280 $65 No 4 LEDs, 4 buttons, Dual 7-Segment LED Display, VGA, 25 MHz on-board clock, 1 Mb Flash.
snickerdoodle Xilinx Zynq 7010 28K $95 Yes Xilinx Zynq 7-Series SoC - ARM Cortex-A9 processor, and Artix-7 FPGA. 125 IO pins. 1GB DDR2 RAM. Texas Instruments WiLink 8 wireless module for 802.11n Wi-Fi and Bluetooth 4.1. No LEDs or buttons, but easy to wire up your own on a breadboard. If you want to use a baseboard, you'll need a snickerdoodle black ($195) with the pins in the "down" orientation. (E.g. The "breakyBreaky breakout board" ($49) or piSmasher SBC ($195)). The snickerdoodle one only comes with pins in the "up" orientation and doesn't support any baseboards. But you can still plug the jumpers into the pins and wire up things on a breadboard.
numato Mimas A7 Xilinx Artix 7 52K $149 No 2Gb DDR3 RAM. Gigabit Ethernet. HDMI IN/OUT. 100MHz LVDS oscillator. 80 IOs. 7-segment display, LEDs, buttons. (Found in this Reddit thread.)
Ultra96 Xilinx Zynq UltraScale+ ZU3EG 154K $249 Yes Has one of the latest Xilinx SoCs. 2 GB (512M x32) LPDDR4 Memory. Wi-Fi / Bluetooth. Mini DisplayPort. 1x USB 3.0 type Micro-B, 2x USB 3.0 Type A. Audio I/O. Four user-controllable LEDs. No buttons and limited LEDs, but easy to wire up your own on a breadboard
Nexys A7-100T Xilinx Artix 7 15,850 $265 No . 128MiB DDR2 RAM. Ethernet port, PWM audio output, accelerometer, PDM microphone, microphone, etc. 16 switches, 16 LEDs. 7 segment displays. USB HID Host for mice, keyboards and memory sticks.
Zybo Z7-10 Xilinx Zynq 7010 17,600 $199 Yes Xilinx Zynq 7000 SoC (ARM Cortex-A9, 7-series FPGA.) 1 GB DDR3 RAM. A few switches, push buttons, and LEDs. USB and Ethernet. Audio in/out ports. HDMI source + sink with CEC. 8 Total Processor I/O, 40 Total FPGA I/O. Also a faster version for $299 (Zybo Z7-20).
Arty A7 Xilinx Artix 7 15K $119 No 256MB DDR3L. 10/100 Mbps Ethernet. A few switches, buttons, LEDs.
DE10-Standard (specs) Altera Cyclone V 110K $350 Yes Dual-core Cortex-A9 processor. Lots of buttons, LEDs, and other peripherals.
DE10-Nano Altera Cyclone V 110K $130 Yes Same as DE10-Standard, but not as many peripherals, buttons, LEDs, etc.

Winner:

icoBoard ($100). (Buy it here.)
The icoBoard plugs into a Raspberry Pi, so it's similar to having a SoC. The iCE40-HX8K chip comes with 7,680 LUTs (logic elements.) This means that after you learn the basics and create some simple circuits, you'll also have enough logic elements to run the VexRiscv soft-core CPU (the lightweight Murax SoC.)
The icoBoard also supports a huge range of pluggable pmod accessories:
You can pick whatever peripherals you're interested in, and buy some more in the future.
Every FPGA vendor keeps their bitstream format secret. (Here's a Hacker News discussion about it.) The iCE40-HX8K bitstream has been fully reverse engineered by Project IceStorm, and there is an open-source set of tools that can compile Verilog to iCE40 bitstream.
This means that you have the freedom to do some crazy experiments, like:
You don't really have the same freedom to explore these things with Xilinx or Altera FPGAs. (Especially asynchronous circuits.)

Links:

Second Place:

iCE40-HX8K Breakout Board ($49)

Third Place:

numato Mimas A7 ($149).
An excellent development board with a Xilinx Artix 7 FPGA, so you can play with a bigger / faster FPGA and run a full RISC-V soft-core with all the options enabled, and a much higher clock speed. (The iCE40 FPGAs are a bit slow and small.)
Note: I've changed my mind several times as I learned new things. Here's some of my previous thoughts.

What did I buy?

I ordered a iCE40-HX8K Breakout Board to try out the IceStorm open source tooling. (I would have ordered an icoBoard if I had found it earlier.) I also bought a numato Mimas A7 so that I could experiment with the Artix 7 FPGA and Xilinx software (Vivado Design Suite.)

Questions

What can I do with an FPGA? / How many LUTs do I need?

submitted by ndbroadbent to FPGA [link] [comments]

Why I see Virtcoin as a $200 coin when really considering ASIC resistance

First of all, Vertcoin does indeed have a tremendous community, and this is not to be understated. However, this is only a fraction of the value position of this coin. I just want to expand on the ASIC resistance thing a bit. As an electrical engineer who has actually designed ASIC's, I do have some background on this. What I can tell you is that this term "ASIC Resistant" is that it is a little bit misleading. In theory, any algorithm can be turned into an ASIC. An ASIC or Application Specific Integrated Circuit is a digital or analog or mixed analog digital circuit that has been cast into Sea of Gates, Semi-Custom, or Full Custom ASIC technology. The cheapest route is Sea of Gates. If one didn't want to do a Sea of Gates ASIC, they could implement an algorithm in a FPGA, or Field Programmable Gate Array. Altera and Xilinx are the dominant players here. In the early days of Bitcoin, there were many FPGA miners, this was a very common way to mine Bitcoin.
Overall, It takes somewhere between USD $50,000 to $1,000,000 to make an ASIC. It's an expensive process. There is a tremendous amount of engineering, where the circuit is designed in System Verilog, Verilog or VHDL, and very extensive testbenches to make sure that the when the chip is made it works the first time. Engineers prototype ASICs in FPGA's, and the development boards for ASIC emulation can cost $20k or more just in themselves. Then the design goes to a foundry where the chip is made, and that will be expensive, $50k to $500k. So there has to be motivation to make an ASIC, such as high volume chip sales. For Sea of Gates technology, a rule of thumb is that there is typically a break even point when a company sells 1,000 to 2,000 chips a year that has been made into an ASIC. That is because Sea of Gates is about a $100k process.
The ASIC Resistance of Vertcoin is not technology related, i.e. the algorithm that is currently being used could be made into an ASIC. What makes Vertcoin ASIC resistance is the commitment of the team to change the algorithm if someone does make an ASIC to mine Vertcoin. This is what gives Vertcoin it's value position. I really appreciate that! This is a de-facto way to limit the power of miners, in one simple swipe.
How wants to deal with this Bitcoin forking situation anymore? At this point, with the upcoming fork, it seems more and more unnecessary. I see Bitcoin as a storage of value layer, and other coins such as VTC and LTC as transaction layer coins.
To me what gives VTC value is the intention of the community AND the consequent action of it.
submitted by TeslaCrytpo to vertcoin [link] [comments]

Anyone bullish on XLNX?

There's a pretty interesting debate in the AI space right now on whether FPGAs or ASICs are the way to go for hardware-accelerated AI in production. To summarize, it's more about how to operationalize AI - how to use already trained models with millions of parameters to get real-time predictions, like in video analysis or complex time series models based on deep neural networks. Training those AI models still seems to favor GPUs for now.
Google seem to be betting big on ASICs with their TPU. On the other hand, Microsoft and Amazon seem to favor FPGAs. In fact Microsoft have recently partnered with Xilinx to add FPGA co-processors on half of their servers (they were previously only using Intel's Altera).
The FPGA is the more flexible piece of hardware but it is less efficient than an ASIC, and have been notoriously hard to program against (though things are improving). There's also a nice article out there summarizing the classical FPGA conundrum: they're great for designing and prototyping but as soon as your architecture stabilizes and you're looking to ramp up production, taking the time to do an ASIC will more often be the better investment.
So the question (for me) is where AI inference will be in that regard. I'm sure Google's projects are large scale enough that an ASIC makes sense, but not everyone is Google. And there is so much research being done in the AI space right now and everyone's putting out so many promising new ideas that being more flexible might carry an advantage. Google have already put out three versions of their TPUs in the space of two years
Which brings me back to Xilinx. They have a promising platform for AI acceleration both in the datacenter and embedded devices which was launched two months ago. If it catches on it's gonna give them a nice boost for the next couple of years. If it doesn't, they still have traditional Industrial, Aerospace & Defense workloads to fall back on...
Another wrinkle is their SoCs are being used in crypto mining ASICs like Antminer, so you never know how that demand is gonna go. As the value of BTC continues to sink there is constant demand for more efficient mining hardware, and I do think cryptocurrencies are here to stay. While NVDA has fallen off a cliff recently due to excess GPU inventory, XLNX has kept steady.

XLNX TTM P/E is 28.98
Semiconductors - Programmable Logic industry's TTM P/E is 26.48

Thoughts?
submitted by neaorin to StockMarket [link] [comments]

[UK] Selling loads of assorted parts, 5870s, 6990, processors, motherboards, ram, psus, fpga, tablets, ...

Hi all, I am obviously new here, but have good reputation elsewhere I am quite happy to jump through any hoops that give you additional peace of mind :)
If you live near Margate, UK you are welcome to pick up in person or I will ship (even internationally) as long as you cover the shipping costs.
Got lots of stuff I don't want, the prices I'm listing are just rough guidelines, If you can find any of my stuff cheaper elsewhere I will certainly lower my price. I pretty much did a rough price guestimate using eBay listings. Things with (boxed) mean that I have the original box for them. Some stuff I havn't priced up, just make sensible offers :)
I will accept pretty much any payment method if possible, Paypal, Bitcoin, BACS Transfer, etc. Just ask! :)
Without further ado, things:
£350 - Saphire AMD 6990
£70 - 7 x XFX ATI HD 5870 1GB (boxed) 1
£40 - 4 x Corsair CX600 Builder series 600W power supplies (boxed) 1
£20 - 6 x AMD Sempron 140 2.7ghz processors (Maybe dual core unlockable) (boxed) 1
£5 - 3 x Kingston ValueRAM 2GB DDR3 1066Mhz memory (boxed) 1
£30 - 6 x Asus M4N68T-M LE V2 motherboards (boxed) 1
£140 - 1 x Iiyama E2607WSV 1920x1200 26" Monitors 2
£50 - Antec CP-850 850W power supply (requires CPX form factor case)3
£50 - Altera DE0 (Cyclone 3) FPGA (Brand new unused but open box)4
£35 - O2 Joggler hackable tablet thingy, powered by an Intel atom and most Linux distros have been ported. (boxed)5
NZXT Sentry LXE Touch screen fan controller 6
Asus P5VD1-X motherboard 7
Pentium 4 3ghz (I think, this hasn't seen the light of day in a while :p) 7
2 x 1GB DDR 400Mhz Adata memory 7
If you are curious about where all this stuff has been / come from, here's some history on everything :)
1) All of this stuff was purchased for bitcoin mining back in May 2011. It's all been faithfully mining in my spare bedroom since then, has turned a nice little profit, and is now a bit too slow to compete with all the other miners, so it's gotta go! photo 1 photo 2
2) These used to be the monitors I used on my main desktop. I decided to upgrade to 2560x1440 monitors, so these are now sitting in the spare bedroom not doing much. They were always great monitors though! photo
3) Used to be the power supply in my main PC, however when I upgraded to a new motherboard I could no longer fit my SLi setup in since the PSU was right up against the bottom of the board and I needed to utilise the bottom slot. Remember that this is the new CPX form factor by Antec, so you'll either need an Antec case or a hacksaw to get it to fit ;)
4) Bought this for bitcoin experimentation but never ended up using it. It got took out of the box and I looked at it, that was about it. Never been used and in the original box with all the things.
5) These are great fun especially for the price, I bought it and used it as a bedside clock for a while (Yay Ubuntu+Conky). I use my Nexus 7 to do this job now though, so this has been relegated to the cupboard. Has a green stuck pixel right on the edge of the screen. You can find lots of info about hacking them here
6) Used to use this as my fan controller but switched to a couple of BitFenix recons because I fan control in software. Looks really cool though. Shame I can't have this and software control really! :P
7) Used to be my old gaming PC, got relegated to being the home theatre PC and then got relegated to the cupboard :P, Hasn't been used in a while but I assume it all still works, will test it before I send it off.
That's all, again feel free to ask me any questions. or negotiate on the prices (especially if your ordering more than one thing). I'm on IRC (Freenode) should you want to IM me. :)
submitted by Azelphur to hardwareswap [link] [comments]

Bad doge, no FPGA :(

Hello my fellow shibes, sit back for a sad story :(
So a year or so ago I played around with bitcoin mining for a few weeks. I've got an assortment of Altera development boards, so naturally I tried mining BTC on them. They did pretty okay -- I'm getting 120Mhash/sec on the Altera SOCkit (Cyclone 5) using basically someone's open-source project ported to this device, with no optimization. I had also written an optimized core for a smaller device and doubled its performance, so it stands to reason that I could probably get around to 200Mhash with some careful coding on this board. Pretty reasonable; competitive with lower-end graphics cards at significantly lower power dissipation. Of course, by the time I was doing this, commercial ASIC miners were just coming on the scene and blow FPGAs out of the water! I mined a few mBTC, then moved on to other things and forgot about cryptocurrencies for a while.
Along comes Dogecoin (woof!)!
Fire up my laptop with GT620M graphics and get 25kHash. Decide to look at an FPGA implementation again (starting with an open source project here ). Port it to the Cyc5, flash it, and get... 1.5kHash. Not good. Now, there's room for ~4 cores, so that's 6kHash theoretical with the unoptimized core. I started thinking of potential optimizations, and even started writing a new core, but paused and did some calculations and the results aren't good. It really is a memory-bound algorithm! The FPGA only has enough memory for 4 full scratchpad blocks (or 8 half, etc.), meaning that folding more than 4 processing cores into a pipeline is more than a waste. A 4-deep salsa pipeline has really long path lengths, making for a low max clock rate... but a longer pipeline (with a correspondingly faster clock rate) has more wasted cycles. We can do partial scratchpads and regenerate the missing data to keep the pipeline more full, but this has diminishing returns, some quick calculations it's asymptotic to about 2x improvement (and this is theoretical; adding more complexity overall tends to slow the core down).
The thing is, modern GPUs are running 256-512bit memory interfaces, at 2-4GHz, to 2-4GB memory. That memory bandwidth and size is just something an FPGA cannot reach, at least not at a competitive price point. Even the high-end Altera FPGAs don't have more than a handful of MB of RAM.
Moreover, it's hard to even get enough I/O pins to implement a 512-bit memory interface on an FPGA, and it certainly won't be running at 4GHz!
So, TL;DR: GPUs win this round! A custom FPGA board with a very wide external memory might be competitive, and an ASIC could be competitive (but would basically be a GPU). No FPGA for this shibe :(
submitted by semifnordic to dogecoin [link] [comments]

Bitcoin mining 2 x DE2-115 Altera FPGA using slush pool mining proxy Bitcoin Mining with FPGAs (EC551 Final Project) ELE 432- FPGA Bitcoin Miner Are FPGA Miners Profitable? Hash Altcoin Blackminer F1 ... Bitcoin mining 4 DE2-115 Altera cyclone 4 FPGA

FPGA miner is a miner that makes use of a compatible FPGA Board. The miner works either in a mining pool or solo. It was released on May 20, 2011. Open Source FPGA Bitcoin Miner. From BitcoinWiki. This is the approved revision of this page, as well as being the most recent. Jump to: navigation, search. Enjoyed the article? Share: A FPGA from Altera. A miner that makes use of a compatible FPGA ... This is the first open source FPGA Bitcoin miner. It was released on May 20, 2011. Contents. 1 Software needed; 2 Compiling. 2.1 Altera; 2.2 Changing the clock speed; 3 Programming the FPGA. 3.1 Altera; 3.2 Using urjtag; 4 Mining. 4.1 Altera; 5 See Also; 6 External Links; 7 References; Software needed. Currently programming and running the FPGAminer code requires Quartus II for Altera devices ... Altera FPGA chip. ASIC miners are for professional use. They are powerful computers, but they are geared towards a single algorithm. It is not possible to use it for anything else. A completely open source implementation of a Bitcoin Miner for Altera and Xilinx FPGAs. This project hopes to promote the free and open development of FPGA based mining solutions and secure the future of the Bitcoin project as a whole. A binary release is currently available for the Terasic DE2-115 Development Board, and there are compile-able projects for numerous boards. - fpgaminer/Open ... This is the first open source FPGA Bitcoin miner. It was released on May 20, 2011. Software needed. Currently programming and running the FPGAminer code requires Quartus II for Altera devices and Xilinx ISE Webpack for Xilinx devices. Quartus is 32bit only. The free ISE Webpack does not work on devices larger then Spartan6 LX75. Compiling Altera. The compile the code on an different Altera ...

[index] [44669] [257] [22993] [48105] [41805] [15860] [10887] [43090] [39993] [17030]

Bitcoin mining 2 x DE2-115 Altera FPGA using slush pool mining proxy

This video is unavailable. Watch Queue Queue. Watch Queue Queue Bitcoin mining 2 x DE2-115 Altera FPGA using slush pool mining proxy - Duration: 0:19. M J 155 views. 0:19 . Intel Demonstration of FPGA-based AlexNet Deep Learning Processing - Duration: 2:36 ... I picked up a few PCI FPGA Cards on eBay for 99p which, apparently, can mine BitCoins at a speed of 21 Ghash/s (once they're correctly configured!) BitCoin Mining FPGA Card - Duration: 4:06. CarlsTechShed 97,578 views. 4:06. The Outlook on Cryptocurrency Mining ... Bitcoin Mining with FPGAs (EC551 Final Project) - Duration: 6:11. Advanced ... Practice of a miner carried out in Verilog, where the algorithm SHA-256 is stored, uses programs in TCL that receive the Blockheader of the pool slush.com

#